OLS - R-square

Population model:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \tag{4.4}
\end{equation*}
$$

- The assumption is that changes in X lead to changes in Y.
- We are using these changes to choose the line.
- But X isn't the only reason that Y changes.
- There are things in the random error term, too.
i. How well does the estimated model explain the Y variable?
ii. or...How well do changes in X explain changes in Y ?
iii. or...How well does the estimated regression line "fit" the data?
iv. or... What portion of the variance in Y can be explained by X ?

R-squared is a statistic that provides a measure for all of these (equivalent) questions.

Which regression "fits" better?

Demand for liquor (left), demand for cigarettes (right)

What is the difference between the red (triangles) and blue (circles) data?

- Both the red and blue data provide the same estimated line
- That is, both red and blue have the same b_{1}
- But, the line fits the red data better
- Changes in X account for more of the changes in Y, for red
- For the blue data, the unobserved factors are accounting for more of the changes (or variation) in Y

Now, we will come up with a statistic (it's just an equation using the data!), that will describe:

The portion of variance in Y that can be explained using variance in X.

Population model:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \tag{4.4}
\end{equation*}
$$

Estimated model:

$$
\begin{equation*}
Y_{i}=b_{0}+b_{1} X_{i}+e_{i} \tag{4.7}
\end{equation*}
$$

Recall:

$$
\begin{equation*}
\hat{Y}_{i}=b_{0}+b_{1} X_{i} \tag{4.5}
\end{equation*}
$$

So:

$$
Y_{i}=\hat{Y}_{i}+e_{i}
$$

Actual Y data

To get R-squared:

- we'll start by taking the sample variance of both sides.
- This will break the variance in Y up into two parts:
- variance that we can explain (\hat{Y}),
- and variance that we can't explain (e).
- After some algebra, we'll write: TSS = ESS + RSS

TSS - total sum of squares
ESS - explained sum of squares
RSS - residual sum of squares

R -squared will then be defined as:

$$
R^{2}=\frac{E S S}{T S S}
$$

Two extremes will bound R^{2} between 0 and 1 :

- no fit
- perfect fit

To get R^{2} in R , use the summary () command:
summary $(7 m(y \sim x))$

It provides a lot of information (we'll figure out the rest later).

```
summary(7m(y ~ x))
Ca11:
1m(formula = y ~ x)
Residuals:
\begin{tabular}{rrrrr} 
Min & 10 & Median & 3 Q & Max \\
-37.114 & -12.570 & -0.226 & 12.739 & 31.249
\end{tabular}
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>\mid \mathrm{t\mid l})\) \\
(Intercept) & -3.284 & 17.866 & -0.184 & 0.858736 \\
x & 8.583 & 1.431 & 5.999 & 0.000324
\end{tabular}
Signif. codes: 0 '***' 0.001 ‘**' 0.01 ‘*’ 0.05 '.' 0.1 ‘ ' 1
Residual standard error: 22.75 on 8 degrees of freedom Multiple R-squared: 0.8181, Adjusted R-squared: 0.7954 F-statistic: 35.98 on 1 and \(8 \mathrm{DF}, \mathrm{p}\)-value: 0.0003239
```

